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An analysis is made  of  the classical five-dimensional sourceless Kaluza-Kle in  
equations with the existence of the usual  0/0 q, Killing vector not assumed,  where 
0 is the coordinate of  the fifth dimension. The physical distance around the fifth 
dimension Ds, needed for the calculation of the fine structure constant  cr is not 
calculable in the usual  theory because the equations have a global scale invari- 
ance. In the present  case, the Killing vector and the global scale invariance are 
not  present, but  it is found rather generally that D 5 = 0. This indicates that 
quan tum gravity is a necessary ingredient if ~ is to be calculated. It also provides 
an alternate explanation of  why the universe appears four-dimensional.  

1. INTRODUCTION 

Kaluza (1921) and Klein (1926) first wrote down a five-dimensional 
unification of general relativity and electromagnetism. An important aspect 
of  their work is the assumption that the five-dimensional metric gAB is 
independent of the coordinate of the fifth dimension tp. A conceptual 
problem is why such a 0/06 Kll]ing vector should exist. Chodos and 
Detweiler (1980) have written an interesting paper showing, in the context 
of a specific Kasner (1921) solution to the five-dimensional vacuum Einstein 
equations, that three spatial dimensions expand and one contracts to a very 
small value, explaining why the universe appears to be four-dimensional. 
They put the electromagnetic vector potential A~, into g.5 as a perturbation 
and look at the Kle in-Gordon equation in five dimensions. As in the earlier 
work, of Souriau (1963), they find that the fine structure constant cz can be 
written in terms of the distance around the fifth dimension D5 as o~ = 
(4zrrelanck/Ds) 2, assuming that this fifth dimension is compact. Putting in 
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the experimental value of a gives D5 = 100rpla,ck, where rPlanck = (hG/C 3) 1/2 

is the Planck radius, [See Gross and Perry (1983), Pollard (1983), Belinski 
and Ruffini (1980), Perry (1984), and Sorkin (1983) for a representative 
sample of other solutions to the Kaluza-Klein equations.] 

Chodos and Detweiler (1980) could not calculate D5 and hence a from 
first principles because the classical equations with the 0/0qJ Killing vector 
present are globally scale invariant under a scale transformation involving 
the ~0 coordinate (Gross and Perry, 1983). There is nothing in the theory 
to set this scale. One possibility explored by Appelquist and Chodos (1983) 
is that this dilatation invariance is broken once tb-dependent quantum 
corrections are taken into account. A calculation of the dilaton mass could 
fix a value for Ds. They found that they could get quantum shrinkage of 
an already existing S ~ fifth dimension down to sizes on the order of the 
Planck length, but they could not calculate/)5. 

Another possibility is to abandon the assumption that a 0/0~O Killing 
vector exists. Since this assumption partially ruins the unification of gravita- 
tion and electromagnetism in a five-dimensional framework, abandoning it 
might prove fruitful. Thus, in this paper, I consider a five-dimensional 
space-time with gAB(tP) and see what can be said about the distance around 
the fifth dimension D5 under rather general assumptions. I want to see if 
the lack of a 0/0~O Killing vector and hence a lack of scale invariance in 
the classical equations will make it possible to calculate/95 and hence a. 
I find, rather surprisingly, that the ~O dependence in gAB forces D5 to be 
zero classically. The fifth dimension is unobservable not because it shrinks 
in time, but rather because the geodesic distance around it vanishes. 

I delimit gab to a form compatible with the observed large-scale 
universe and write down the five-dimensional Einstein field equations in 
Section 2. In Section 3 I separate and solve these equations under very 
general assumptions, and in Section 4 calculate D5 and summarize the 
results. 

2. FORM OF THE METRIC CONSIDERED AND 
THE FIELD EQUATIONS 

A completely general five-dimensional manifold is much too general 
for our purposes. We want to limit gAB, where A, B range from 1 through 
5, to a form consistent with the form of the large-scale universe. I use a 
(-1,  1, 1, 1, 1) signature, so that the fifth dimension is spatial. Since the 
universe is homogeneous and isotropic in its three spatial dimensions, I 
assume that our five-dimensional space-time has a maximally symmetric 
three-dimensional subspace. From Weinberg (1972) this simplifies the line 
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element to the form 

ds2=gab(t, ~O)+f(t, qO[dr2(1-kr2)-l+r 2 dOZ+r2sin 20d~ z] (1) 

where k = 0, + 1 and a and b range over the remaining two dimensions. In 
addition, I assume that we have a global time coordinate that can be used 
as the time coordinate of  a Gaussian coordinate system. The time coordinate 
t will thus be taken to be the length of a timelike geodesic that goes through 
each point and is orthogonal to a four-dimensional spacelike hypersurface. 
The four spatial coordinates are being treated the same here. The line 
element then assumes the form 

ds 2= -dt2+ N(t ,  d/) d@ 2 

+ R2(t, tp)[dr2(1-kr2)-l+r 2 dO2+r2sin 20dqb 2] (2) 

where r is a dimensionless distance marker. I assume that the topology of 
the fifth dimension is that of a circle (Bergmann, 1942) and that the circle 
is small, so that distances in our usual four dimensions do not depend upon 
the fifth dimension in an unacceptable way. Note that gAB is diagonal and 
depends explicitly on the coordinate of the fifth dimension ~0. The com- 
ponents of  gab a r e  then 

g" = -1,  gkj = R-2~kj, g55 = N-1 (3) 

where gkj refers to the three-dimensional spatial metric inside the brackets 
in (2). Lowercase Latin letters run over the three coordinates of  ordinary 
space and t always refers to time. 

Note that the A,  of  electromagnetism can be put in as a perturbation 
on g~s later if we wish to relate the fine structure constant to D5 as Chodos 
and Detweiler (1980) do (Greek letters refer to four-dimensional space- 
time). We are assuming in (2) that electromagnetic fields are not playing a 
large role in the structure of the universe as a whole. 

In order to write down the Einstein field equations, we need an 
energy-momentum tensor. In the usual Kaluza-Klein theory with A,  present 
and a O/O~ Killing vector assumed, the five-dimensional vacuum Einstein 
equations, with energy-momentum tensor TAn = 0, yield the correct Einstein 
equations correctly sourced with the electromagnetic T,~ in four dimensions. 
Thus TAB = 0 is a reasonable and logical choice. We could also consider 
an explicit TAn which is a generalization to five dimensions of the four- 
dimensional energy mementum tensor for a comoving perfect fluid charac- 
terized by a pressure P(t) and density p(t). This would modify the time 
dependence of the field equations below but would not materially modify 
the qJ-dependent equations or the calculation of Ds. For simplicity and for 
ease of  comparison with the work of  Chodos and Detweiler (1980) we 
consider Tap = O. 
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From (2) and (3) we can work out the nonzero Christoffel symbols as 

i " i  Fkj = Fkj, F~ = -(RR'/N)~,~ 
(4) 

F~j = ' i (R / R)~j,F~5=�89 N 

r~, = �89 F~5= _K/-/2 

where a dot is a time derivative, a prime is a 0 derivative, and a quantity 
with a tilde above it refers to the spatial three-dimensional metric in [...] 
brackets in (2). 

Using (4), we find that the Einstein equations in five dimensions, 

R~, =o (5) 

2R '2 RR" 
- 2k +---N - -  2/~2- R/~ q N 2 

1 /V 1 / ~ r  2 3/~ 

2 N 4~'N) 
+-~-=  0 (6) 

1 R[~IV 1 RR'N'  
- -  = 0 (7)  

N 2 N 2 

3R" N /~/21 3 R 'N'  31~lil 
+ - - = 0  (8) 

R 2 N 4  2 R N  2 R 

3/~' 3 ] V R '  
= 0 (9) 

R 2 N R  

become 

for the tt,/j, 55, and 5t sectors, respectively. The other sectors give equations 
which are identically satisfied. These equations are solved in the next section. 

3. SEPARATION AND SOLUTION OF THE FIELD EQUATIONS 

Let us write 

S(~b, t) = F(qQ T(t), R(~b, t) = H(~b)S(t) (10) 

and see if we can separate the field equations into equations that depend 
only on t and equations that depend only on Lp. Substituting (10) into (6)-(9) 
gives 

2 T 4 \T ]  3 ~ =  (11) 

- 2 k  T + 2 ( H ' ~  2 H" 1 H '  F' [~ [,~\2 1 'S~] 
H 2 -~ F\-H,I  -~ HF 2 H F 2 -  TL-s+2~S) +2-S (12) 
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3 H "  

HF 
3H' F' [~T 3S T I(T'~2 l 
2 H F 2 - T _  -~2S  T 4 \ -T]  3 (13) 

S H '  1 T H '  
S H 2 T H (14) 

Let us look at (14) first. If H ' =  0, (14) is identically satisfied and the other 
equations also do not depend on F'. All 0 dependence goes away, giving 
a metric with a 0/00 Killing vector, as discussed by Chodos and Detweiler 
(1980). We willl return to this case later. We are primarily interested in 
having a metric that depends on 0, and therefore let us assume H ' r  0. 
Then (14) rather remarkably gives 

s -  2 r (15) 

o r  

S(t) = AT( t )  '/2 (16) 

where A is a constant. Thus, if S(t) is expanding in a Hubble expansion, 
so must the fifth dimension be expanding, rather than shrinking as in the 
Chodos and Detweiler (1980) case. Note that (14) arose in the 5t sector of 

--~gaBTc, but (5), so this result also depends o n  Sst ~-O, where SAB ~ TAB 1 c 

is otherwise quite general, not depending on the details of the energy- 
momentum tensor. We of  course are letting TA~ = 0. Also note that this 
does not mean that the distance around the fifth dimension D5 must be 
large, since this also depends on F(~0) in (10). 

The final result for Ds does not depend on the time-dependent 
equations. However, for completeness, let us solve these equations to make 
sure they are self-consistent. Using (15), we find the solution of  (11) to be 

S( t) = ( C + Dt2) 1/2 (17) 

where C and D are constant. T(t) is given by (16). The Hubble constant 
is  

S I Dt~ 
Ho~-~ t=to C + Dtg 

and the deceleration parameter is 

es I qo = --~7 ,=to = Dtg 

where to is the time of the present epoch. 

(18) 

(19) 
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Let us now turn to the ~b-dependent equations (12) and (13). We see 
that (13) can be separated and written as 

3H" 3 H '  F '  
HF 2 H F 2 Co (20) 

and 

T .~ 1(7"'] 2 Co = u  (21) 

where Co is a constant. Also rather miraculously (12) separates, but only 
because (16) holds. Then (12) can be written as the two equations 

Cl (22) 
H2A 2 F \  H ] 

and 

C~+~= ~ g 2 

where C1 is a constant and use has been made of (20) and (15). Now using 
(15) and (16), we see that (23) is the same as (21) if Co=3C1. Also, the 
solution for S(t) in (17) also satisfies (21) and (23) if C = 0 and D = COA2/3. 
Thus the time-dependent equations are all self-consistent and we have 

S ( t ) =  ~ At (24) 

and T(t) given by (16). Also, (18) gives Ho = 1~to and (19) gives qo=0. 
The ~b dependence in the problem is now determined by (20) and (22), 

where Co=3C1. We can now solve (22) for F(~b) and find 

H '  2 - 1  

where we assume that the denominator does not vanish. If  this denominator 
vanishes, we are forced back to the uninteresting H '  = 0 case by (22). If  we 
differentiate (25) with respect to ~ and put the resulting F and F '  into (20), 
we find that (20) is identically satisfied. Thus, H ( ~ )  is unspecified by our 
equations. A choice of H ( 0 )  in the original metric (2) with (10) inserted 
corresponds to a choice of 0 coordinate system. We will calculate the 
distance around the fifth dimension in the next section in order to look at 
H(O) effects. Note that we have explicitly assumed that H' ~ 0 in order to 
derive (25). We are interested in H ' r  0 in order to study effects of q, 
dependence and the lack of a 0/0~ killing vector in the metric. 
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4. CALCULATION OF THE DISTANCE AROUND 

THE F I F r H  D I M E N S I O N  

We are now in a position to calculate the distance around the fifth 
dimension, Ds, which is also the quantity needed if we are to calculate the 
fine structure constant a. From the form of the metric in (2) and using (10) 
and (25), we have that 

Coil= 3k/A2/ dtp (26) 

where Co and A are nonzero integration constants defined earlier and it is 
assumed that the fifth dimension is compact  with the coordinate ~p ranging 
from 0 to X. We now use the earlier assumption that the topology of  the 
fifth dimension is the same as that of  a circle. Then the points ~b = 0 and 
~b =X are identified and we must have H(~b)= H(~b + X). We can integrate 
(26) to give 

D5 = 0 (27) 

since the integrand is a perfect differential and since H ( 0 ) =  H(X). This 
result holds for all k = 0, + 1. Thus we can conclude rather generally in this 
classical calculation that the distance around the fifth dimension is zero, in 
the general case where a 0/0~b killing vector is not assumed to exist for the 
five-dimensional metric. Notice that the time dependence T(t) plays no 
role in this conclusion~ Because of the unexpected nature of  this result, I 
list the key assumptions that went into it: 

1. We are interested in looking at the general case where a 0/aO Killing 
vector does not exist. I f  H'(q,)  = 0, such a Killing vector does exist. 
Thus we assumed H' (~b)~ 0. 

2. We assumed an initial form of the metric with a maximally symmetric 
three-dimensional subspace and with a global time coordinate that 
could serve as the time coordinate of  a Gaussian coordinate system. 

3. We considered the case where the five-dimensional energy- 
momentum tensor TAB = 0, for simplicity. This could be relaxed to 
include a generalization to five dimensions of  the usual four- 
dimensional expression for a comoving perfect fluid. Source terms 
that are time dependent  have no effect on our conclusion so long 
as Sst = 0. Conceptually, explicit source terms in a unified theory 
seem out of  place. 

4. We took the fifth dimension to be compact  with the topology of a 
circle. This circle was assumed to be small compared to the usual 
accessible space-time distances. 

Chodos and Detweiler (1980) find very different behavior. They find 
a fifth dimension that contracts in time and has a finite distance around at 
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any given instant. We find Ds = 0 and a time dependence for the fifth 
dimension that follows the Hubble expansion. How can these be reconciled? 
If we assume the existence of a 0/00 Killing vector [the Kasner solution 
used by Chodos and Detweiler (1980) has no 0 dependence],  then our 
H'(O) = 0. The important relation (15) between S and ir no longer follows 
from the 5t sector field equation (14). Our time-dependent equations are 
then substantially altered and (25) no longer holds. Since the original form 
of our metric is compatible with the form used by Chodos and Detweiler 
(1980) if we let H(~b) = F ( 0 )  = 1, we can reproduce their results, which 
have k = 0. 

To conclude, I have shown that if we do not assume the existence of 
a 0/c30 Killing vector, then the distance around the fifth dimension is zero, 
classically. (See the other assumptions above.) This provides an alternative 
explanation of why the fifth dimension is not observed: it does not shrink 
in time as in Chodos and Detweiler (1980), but rather always has physical 
size zero from the constraints placed upon it by the field equations and 
from the assumed circular topology. I had hoped to calculate D5 and hence 
the fine structure constant a, since the global scale invariance, which is 
present in the usual theory with the Killing vector assumed, is absent in 
the present case. (This scale invariance, of course, prevents an actual 
calculation of D5 in the usual theory.) The fact that in this much more 
general case where we do not assume the existence of a 0/00 Killing vector 
we get Ds = 0 classically strongly suggests that a proper calculation of a 
will involve quantum gravity. This is also indicated by the work of  Appelquist 
and Chodos (1983). 
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